Axial Vector Z' and Anomaly Cancellation

Kuo-Hsing Tsao

Ahmed Ismail, Wai-Yee Keung, KT and James Unwin 1609.02188

University of Illinois at Chicago

The 4th International Workshop on Dark Matter, Dark Energy and Matter-Antimatter Asymmetry @ NCTS in Hsinchu December 29, 2016

Image: A math a math

University of Illinois at Chicago

Kuo-Hsing Tsao

University of Illinois at Chicago

Less is More

One of the minimal extensions of the SM: if SM fermions are charged under a new Abelian U(1)' gauge symmetry and interacts with a new vector boson Z':

$$\begin{split} \overline{f} \not{D} f &= \overline{f} \gamma_{\mu} \left(\partial^{\mu} - igq_{f,L} \left(\frac{1 - \gamma_{5}}{2} \right) Z^{\prime \mu} - igq_{f,R} \left(\frac{1 + \gamma_{5}}{2} \right) Z^{\prime \mu} \right) f; \\ &= \overline{f} \gamma_{\mu} \left(\partial^{\mu} - ig(q_{f,L} + q_{f,R}) \frac{1}{2} Z^{\prime \mu} - ig(q_{f,L} - q_{f,R}) \frac{\gamma_{5}}{2} Z^{\prime \mu} \right) f \end{split}$$

However, this minimal U(1)' extension brings the anomaly into the SM if we don't introduce additional fermions.

Kuo-Hsing Tsao

Kuo-Hsing Tsao

University of Illinois at Chicago

Image: Image:

Mirror Construction

University of Illinois at Chicago

Kuo-Hsing Tsao

- Mirror Construction
- An Algebraic Construction

University of Illinois at Chicago

Kuo-Hsing Tsao

- Mirror Construction
- An Algebraic Construction
- General Algebraic Construction

Anomaly Free Conditions

The gauge anomaly occurs when the gauge current is not conserved at the triangular loop

$$<\partial_{\mu}j^{\mu}>~\sim~\mathcal{A}^{abc}=~\mathit{Tr}[\gamma^{5}t^{a}\{t^{b},t^{c}\}]
eq 0$$

where γ^5 refers the chirality.

Other triangulars include $SU(2)^3$ and one of SU(2) or SU(3) vanish due to $Tr[t^a] = Tr[\tau^a] = 0$.

Kuo-Hsing Tsao

Anomaly Cancellation ○●○○○○○○ ○○○○○ ○○○○○

Anomaly Free Conditions

SM is Anomaly Free

$$\begin{aligned} \mathcal{A}_{WWB} &:= \sum_{f_L/w \ \mathrm{SU}(2)} d_3[f_L] Y[f_L] - \sum_{f_R/w \ \mathrm{SU}(2)} d_3[f_R] Y[f_R] = 0\\ \mathcal{A}_{ggB} &:= \sum_{f_L/w \ \mathrm{SU}(3)} d_2[f_L] Y[f_L] - \sum_{f_R/w \ \mathrm{SU}(3)} d_2[f_R] Y[f_R] = 0\\ \mathcal{A}_{GGB} &:= \sum_{f_L} d_2[f_L] d_3[f_L] Y[f_L] - \sum_{f_R} d_2[f_R] d_3[f_R] Y[f_R] = 0\\ \mathcal{A}_{BBB} &:= \sum_{f_L} d_2[f_L] d_3[f_L] (Y[f_L])^3 - \sum_{f_R} d_2[f_R] d_3[f_R] (Y[f_R])^3 = 0 \end{aligned}$$

where d_N is the dimension of the representation under SU(N), and Y is the hypercharge.

Kuo-Hsing Tsao

Anomaly Free Conditions

U(1)' Anomaly Free Conditions

Analogously with the SM anomaly cancellation condition, there are $\mathcal{A}_{WWZ'}$, $\mathcal{A}_{ggZ'}$, $\mathcal{A}_{GGZ'}$, and $\mathcal{A}_{Z'Z'Z'}$ and two additional cancellation needed from U(1)-U(1)' mixing:

$$\begin{aligned} \mathcal{A}_{Z'Z'B} &:= \sum_{f_L} d_2[f_L] d_3[f_L] Y[f_L] (z[f_L])^2 - \sum_{f_R} d_2[f_R] d_3[f_R] Y[f_R] (z[f_R])^2 \\ &= 0 \\ \mathcal{A}_{BBZ'} &:= \sum_{f_L} d_2[f_L] d_3[f_L] z[f_L] (Y[f_L])^2 - \sum_{f_R} d_2[f_R] d_3[f_R] z[f_R] (Y[f_R])^2 \\ &= 0 \end{aligned}$$

Kuo-Hsing Tsao

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Anomaly Free Conditions

Exotics and Anomaly Free

In the case of a pure Axial vector coupling to both the SM and $\mathsf{DM}:$

$$z_q^{(i)} := z_Q^{(i)} = -z_u^{(i)} = -z_d^{(i)}; \ z_l^{(i)} := z_L^{(i)} = -z_e^{(i)}; \ z_{\text{DM}} := z_{\chi_L} = -z_{\chi_R}$$

Field Name	$U(1)_Y$	SU(2) _L	SU(3)	Notation
$Q_L^i, Q_{L,R}'$	1/3	2	3	$(3,2)_{(1/3, z)}$
u_R^i , $u_{L,R}'$	4/3	1	3	$(1,2)_{(4/3, z)}$
$d_R^i, d_{L,R}'$	-2/3	1	3	$(3,1)_{(-2/3, z)}$
$L_L^i, L_{L,R}^i$	-1	2	1	$(1,2)_{(-1, z)}$
e_R^i , $e_{L,R}^\prime$	-2	1	1	$(1,1)_{(-2, z)}$
$S_{L,R}$, ν_R , $\chi_{L,R}$	0	1	1	$(1,1)_{(0,z)}$

Kuo-Hsing Tsao

University of Illinois at Chicago

Anomaly Cancellation 0000●000 0000 00000 00000

Anomaly Free Conditions

The Mirror Construction

Anomalies are canceled if for every SM fermion there is an exotic in the same representation of SU(2) and SU(3) with:

Kuo-Hsing Tsao

University of Illinois at Chicago

Image: A math a math

The Mirror Construction

Anomalies are canceled if for every SM fermion there is an exotic in the same representation of SU(2) and SU(3) with:

• The same $U(1)_Y$ and U(1)' charges but opposite chirality

Kuo-Hsing Tsao

The Mirror Construction

Anomalies are canceled if for every SM fermion there is an exotic in the same representation of SU(2) and SU(3) with:

- The same $U(1)_Y$ and U(1)' charges but opposite chirality
- Or with matching chirality, but opposite U(1)_Y and U(1)' charges

Kuo-Hsing Tsao

The Mirror Construction

Anomalies are canceled if for every SM fermion there is an exotic in the same representation of SU(2) and SU(3) with:

- The same $U(1)_Y$ and U(1)' charges but opposite chirality
- Or with matching chirality, but opposite U(1)_Y and U(1)' charges
- ► e.x. Q_L carries U(1)' charge z_q (i.e. (3,2)_{1/3,zq}), one might add either a LH exotic in the representation (3,2)_{-1/3,-zq} or a RH exotic in (3,2)_{1/3,zq}

Kuo-Hsing Tsao

The Mirror Construction

Anomalies are canceled if for every SM fermion there is an exotic in the same representation of SU(2) and SU(3) with:

- The same $U(1)_Y$ and U(1)' charges but opposite chirality
- Or with matching chirality, but opposite U(1)_Y and U(1)' charges
- ► e.x. Q_L carries U(1)' charge z_q (i.e. (3,2)_{1/3,z_q}), one might add either a LH exotic in the representation (3,2)_{-1/3,-z_q} or a RH exotic in (3,2)_{1/3,z_q}
- Cancellation happens state-by-state and generation-by-generation

Anomaly Free Conditions

An Algebraic Construction

Assume $z_{\text{SM}} := z_q = z_l$ and introduce vector-like exotics Q'_L , Q'_R , u'_L , u'_R , d'_L , d'_R , l'_L , l'_R , e'_L , e'_R ,

Field Name	$U(1)_Y$	SU(2) _L	SU(3)	Notation
$Q_L^i, Q_{L,R}'$	1/3	2	3	$(3,2)_{(1/3, z)}$
u_R^i , $u_{L,R}'$	4/3	1	3	$(1,2)_{(4/3, z)}$
d_R^i , $d_{L,R}^\prime$	-2/3	1	3	$(3,1)_{(-2/3, z)}$
$L_{L}^{i}, L_{L,R}^{\prime}$	-1	2	1	$(1,2)_{(-1, z)}$
e_R^i , $e_{L,R}^\prime$	-2	1	1	$(1,1)_{(-2, z)}$
$S_{L,R}$, ν_R , $\chi_{L,R}$	0	1	1	$(1,1)_{(0,z)}$

University of Illinois at Chicago

Image: A match a ma

Kuo-Hsing Tsao

Straightforwardly, anomaly cancellation is solved by a general and unique set of equations:

$$\begin{aligned} z_{Q'_{R}} &= z_{Q'_{L}} + 2z_{\rm SM}, \quad z_{u'_{R}} = 7z_{\rm SM} + z_{u'_{L}}, \\ z_{d'_{R}} &= z_{d'_{L}} + z_{\rm SM}, \quad z_{L'_{R}} = z_{L'_{L}} + 6z_{\rm SM}, \quad z_{d'_{L}} \neq 2z_{Q'_{L}} + \frac{101}{2}z_{\rm SM} + 14z_{u'_{L}}, \\ z_{e'_{L}} &= \frac{1}{3}(z_{d'_{L}} + 6z_{L'_{L}} - 2z_{Q'_{L}} - 28z_{\rm SM} - 14z_{u'_{L}}), \\ z_{e'_{R}} &= \frac{1}{3}(z_{d'_{L}} + 6z_{L'_{L}} - 2z_{Q'_{L}} - 37z_{\rm SM} - 14z_{u'_{L}}), \\ z_{L'_{L}} &= \frac{1}{\Omega} \left(-8z_{d'_{L}}^{2} - 4z_{d'_{L}}z_{Q'_{L}} - 32z_{Q'_{L}}^{2} - 74z_{d'_{L}}z_{\rm SM} + 58z_{Q'_{L}}z_{\rm SM} - 404z_{\rm SM}^{2} - 28z_{d'_{L}}z_{u'_{L}} + 56z_{Q'_{L}}z_{u'_{L}} + 469z_{\rm SM}z_{u'_{L}} + 133z_{u'_{L}}^{2} \right), \end{aligned}$$

where $\Omega = 606 z_{
m SM} + 168 z_{u'_L} - 12 z_{d'_L} + 24 z_{Q'_L}$

Image: A math a math

Kuo-Hsing Tsao

Anomaly Cancellation 0000000● 00000 000000

Anomaly Free Conditions

f
$$z_{\text{SM}} = z_{Q'_L} = 1$$
 and $z_{u'_L} = -z_{Q'_R} = -3$:
 $z_{u'_R} = 4$, $z_{d'_L} = 3$, $z_{d'_R} = 4$, $z_{L'_L} = -9$,
 $z_{L'_R} = -3$, $z_{e'_L} = -13$, $z_{e'_R} = -16$.

University of Illinois at Chicago

æ

メロト メポト メヨト メヨト

Kuo-Hsing Tsao

A Selection of Anomaly Free Axial Vector Models

	n _G	Universal?	Lepto-phobic/philic?
♯1. /wo DM Model	3	1	×
♯2. /w DM Model	3	1	×
₿3. <i>L</i> -phobic Model	3	1	Leptophobic
♯4. <i>L</i> -phliic Model	3	\checkmark	Leptophilic
♯5. 1G-Model	1	N/A	×
‡6. <i>t-b</i> -Model	1	N/A	Leptophobic

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Kuo-Hsing Tsao

Axial Vector Z'

Anomaly Cancellation ○○○○○○○ ○●○○ ○○○○○ Summary and Outlook

A Selection of Anomaly Free Axial Vector Models

Field	#1	# 2	# 3	<u></u> ‡4	# 5	#6
$z[Q_L]$	1	1	1	0	1	1
$z[u_R]$	-1	-1	-1	0	-1	-1
$z[d_R]$	-1	-1	-1	0	-1	-1
$z[L_L]$	1	1	0	1	1	0
z[e _R]	-1	-1	0	-1	-1	0

University of Illinois at Chicago

æ

メロト メポト メヨト メヨト

Kuo-Hsing Tsao

Axial Vector Z'

Anomaly Cancellation

Summary and Outlook

00000000 0000 0000

A Selection of Anomaly Free Axial Vector Models

Field	#1	# 2	#3	# 4	#5	#6
$z[\chi_L]$	-	9	9	-9/4	1	1
$z[\chi_R]$	-	-9	-9	9/4	-1	-1
$z[Q'_L]$	1	1	1	-	0	0
$z[Q'_R]$	3	-1	0	-	1	1
$z[u'_L]$	-3	-2	-2	-2	-1	-1
$z[u'_R]$	4	3	-1	5/2	0	0
$z[d'_L]$	3	-6	-2	2	-1	-1
$z[d'_R]$	4	5	11	-5/2	0	0
$z[L'_L]$	-9	-82/3	-49/12	-157/48	0	0
$z[L'_R]$	-3	-28/3	95/12	-13/48	1	0
$z[e'_L]$	-13	-100/3	103/6	-85/24	-1	0
$z[e_R']$	-16	-127/3	67/6	-121/24	0	0

Kuo-Hsing Tsao

University of Illinois at Chicago

Summary and Outlook

A Selection of Anomaly Free Axial Vector Models

Field	#1	# 2	# 3	<u></u> #4	#5	#6
$z[\nu_R]$	-	-	-	-	1	1
$N[\nu_R]$	-	-	-	-	2	2

University of Illinois at Chicago

æ

メロト メポト メヨト メヨト

Kuo-Hsing Tsao

SM Fermions

For axial vector couplings $z[\bar{Q}_L u_R] = 2z_0$ and $z[\bar{Q}_L d_R] = 2z_0$, the gauge invariant mass operator $H^{\dagger}\bar{Q}_L u_R$ requires that $z[H^{\dagger}] = -2z_0$. However, $H\bar{Q}_L d_R$ breaks down U(1)' gauge invariance. There are two ways out:

University of Illinois at Chicago

Kuo-Hsing Tsao

SM Fermions

For axial vector couplings $z[\bar{Q}_L u_R] = 2z_0$ and $z[\bar{Q}_L d_R] = 2z_0$, the gauge invariant mass operator $H^{\dagger}\bar{Q}_L u_R$ requires that $z[H^{\dagger}] = -2z_0$. However, $H\bar{Q}_L d_R$ breaks down U(1)' gauge invariance. There are two ways out:

Type II Two Higgs Doublet Model

University of Illinois at Chicago

Kuo-Hsing Tsao

SM Fermions

For axial vector couplings $z[\bar{Q}_L u_R] = 2z_0$ and $z[\bar{Q}_L d_R] = 2z_0$, the gauge invariant mass operator $H^{\dagger}\bar{Q}_L u_R$ requires that $z[H^{\dagger}] = -2z_0$. However, $H\bar{Q}_L d_R$ breaks down U(1)' gauge invariance. There are two ways out:

- Type II Two Higgs Doublet Model
- ► EFT higher dimension operators $\frac{1}{\Lambda}SH^{\dagger}Q_{L}\overline{u}_{R}$. S is a SM singlet and gets vev $\langle S \rangle \equiv v'$ to break U(1)' (Froggatt-Nielson).

Image: A math a math

SM Fermions

For axial vector couplings $z[\bar{Q}_L u_R] = 2z_0$ and $z[\bar{Q}_L d_R] = 2z_0$, the gauge invariant mass operator $H^{\dagger}\bar{Q}_L u_R$ requires that $z[H^{\dagger}] = -2z_0$. However, $H\bar{Q}_L d_R$ breaks down U(1)' gauge invariance. There are two ways out:

- Type II Two Higgs Doublet Model
- ► EFT higher dimension operators $\frac{1}{\Lambda}SH^{\dagger}Q_{L}\overline{u}_{R}$. S is a SM singlet and gets vev $\langle S \rangle \equiv v'$ to break U(1)' (Froggatt-Nielson).
- $m_{Z'} \simeq g' v'; m_S \simeq \lambda_S v'$ (λ_S is the S quadratic coupling);

Image: A match a ma

Mass Generation

Z' Mass Bound

University of Illinois at Chicago

Kuo-Hsing Tsao

Anomaly Cancellation ○○○○○○○ ○●○○○ ○●○○○

Mass Generation

Z' Mass Bound

▶ In EFT(integrate out Z'), $v' \lesssim \Lambda$

Kuo-Hsing Tsao

University of Illinois at Chicago

・ロト ・ 日下・ ・ 日下・

Anomaly Cancellation ○○○○○○○ ○●○○○ ○●○○○

Mass Generation

Z' Mass Bound

- In EFT(integrate out Z'), $v' \lesssim \Lambda$
- ▶ Unitarity tells us m_f , $m_\chi \lesssim \frac{m_{Z'}}{g'} \simeq v'$ (F. Kahlhoefer, *et al.* JHEP **1602** (2016) 016)

University of Illinois at Chicago

(日) (日) (日) (日)

Kuo-Hsing Tsao

Anomaly Cancellation ○○○○○○ ○●○○○ ○●○○○

Mass Generation

Z' Mass Bound

- In EFT(integrate out Z'), $v' \lesssim \Lambda$
- ▶ Unitarity tells us m_f , $m_{\chi} \lesssim \frac{m_{Z'}}{g'} \simeq v'$ (F. Kahlhoefer, *et al.* JHEP **1602** (2016) 016)
- ► The heavy DM and top give the constraint: $m_{Z'} \gtrsim 3.5 \text{ TeV}\left(\frac{g'}{\sqrt{4\pi}}\right) \left(\frac{m_{\text{DM}}}{1 \text{ TeV}}\right)$

University of Illinois at Chicago

(日)

Kuo-Hsing Tsao

Mass Generation

Mass Generation For Vector Like Pairs of Exotics Fermions

▲ロト▲聞と▲目と▲目と 目 のぐら

Kuo-Hsing Tsao

University of Illinois at Chicago

Mass Generation For Vector Like Pairs of Exotics Fermions

▶ It is model dependent. Exotic Higgses are needed.

Kuo-Hsing Tsao

University of Illinois at Chicago

Image: A match a ma

Mass Generation For Vector Like Pairs of Exotics Fermions

- ► It is model dependent. Exotic Higgses are needed.
- UV completeness also requires the introduction of new vector like fermions.

University of Illinois at Chicago

Image: Image:

Kuo-Hsing Tsao

Mass Generation For Vector Like Pairs of Exotics Fermions

- ► It is model dependent. Exotic Higgses are needed.
- UV completeness also requires the introduction of new vector like fermions.

•
$$m_{Z'} \sim g' v' \sim M$$
 and the exotics $(M \sim y' v')$:

$$M \lesssim v' \simeq rac{m_{Z'}}{g'(m_{Z'})}.$$

University of Illinois at Chicago

Image: A math a math

Kuo-Hsing Tsao

Anomaly Cancellation ○○○○○○ ○○○○ ○○○○○ ○○○○○

Mass Generation

Model #1

$$\begin{aligned} z[H] &= 2, \ z[S_1] = 1 \text{ and } z[S_4] = 4 \\ \mathcal{L}_{\rm SMY} \supset y_u^i H \bar{Q}_L u_R + \frac{y_d^i}{\Lambda} S_4 H^{\dagger} \bar{Q}_L d_R + \frac{y_l^i}{\Lambda} S_4 H^{\dagger} \bar{L}_L e_R \\ \mathcal{L}_{\rm Ex} \supset y_{Q'} S_1^2 Q_I' \bar{Q}_R' + \frac{y_{u'}}{\Lambda^2} S_4^2 S_1^{\dagger} u_I' \bar{u}_R' + y_{d'} S_1 d_I' \bar{d}_R' + \frac{y_{L'}}{\Lambda^2} S_4 S_1^2 L_I' \bar{L} \end{aligned}$$

$$\begin{split} \mathcal{L}_{\rm Ex} \supset y_{Q'} S_1^2 Q'_L \bar{Q}'_R + \frac{y_{u'}}{\Lambda^2} S_4^2 S_1^{\dagger} u'_L \bar{u}'_R + y_{d'} S_1 d'_L \bar{d}'_R + \frac{y_{L'}}{\Lambda^2} S_4 S_1^2 L'_L \bar{L}'_R \\ + \frac{y_{e'}}{\Lambda} S_4 S_1^{\dagger} e'_L \bar{e}'_R \end{split}$$

$$L_{\rm UV} \supset y_{\psi} H^{\dagger} \bar{L}_L \psi_L + y_{\psi}' S_4 \bar{\psi}_L e_R + m_{\psi} \bar{\psi}_L \psi_R$$

where $\Lambda=\frac{m_\psi}{y_\psi y_\psi^\prime}$ and ψ_L , ψ_R in the representation $(1,1)_{-2,3}$

Kuo-Hsing Tsao

Axial Vector Z' and Anomaly Cancellation

University of Illinois at Chicago

Image: A math a math

Mass Generation For Mirror Construction

In order to have above EW massive mirror exotics, additional U(1)' neutral charged exotics fermions are introduced:

$$\mathcal{L}_{\textit{Mir}} \supset S \bar{Q}'_L Q'_R + S \bar{u}'_L u'_R + S \bar{d}'_L d'_R + S \bar{L}'_L L'_R + S \bar{e}'_L e_R$$
 .

where $\boldsymbol{z}[Q_L'] = \boldsymbol{z}[u_R'] = \boldsymbol{z}[d_R'] = \boldsymbol{z}[L_L'] = \boldsymbol{z}[e_R'] = \boldsymbol{0}$ and $\boldsymbol{z}[S] = -1$

Kuo-Hsing Tsao

Breakdown of Low Energy Theories

The Non-Perturbative Limit

 ${\rm U}(1)'$ coupling strength $\alpha'\equiv g'^2/4\pi$ runs with the energy scale Q is given by

$$\frac{d\alpha'^{-1}}{d\ln Q} = -\frac{b}{2\pi} \qquad \text{with} \qquad b = \sum_{f} \frac{2}{3} z_{f}^{2} + \sum_{s} \frac{1}{3} z_{s}^{2}$$

If the new fermions enter at the scale M, the running of g' to some UV scale Λ is described by

$$\alpha'^{-1}(\Lambda) = \alpha'^{-1}(m_{Z'}) - \int_{m_{Z'}}^{M} \frac{b_{Z'}}{2\pi} \, \mathrm{d} \ln Q - \int_{M}^{\Lambda} \frac{b_{Z'} + b_{M}}{2\pi} \, \mathrm{d} \ln Q$$

where $b_{Z'}$ the sum is over the SM states and DM.

Kuo-Hsing Tsao

Anomaly Cancellation ○○○○○○ ○○○○ ○●○○○○

Breakdown of Low Energy Theories

At the scale Λ_{P} , the coupling becomes non-perturbative $\alpha'(\Lambda_{P}) \sim 1$ (Landau Pole)

$$\Lambda_{\mathcal{P}} = M \exp\left[\frac{1}{b_{\mathcal{M}} + b_{Z'}} \left(b_{Z'} \log\left[\frac{m_{Z'}}{M}\right] + \frac{2\pi}{\alpha'(m_{Z'})} - \frac{2\pi}{\alpha'(\Lambda_{\mathcal{P}})}\right)\right]$$

University of Illinois at Chicago

・ロト ・ 日下・ ・ 日下・

Kuo-Hsing Tsao

Breakdown of Low Energy Theories

The Non-Renormalizable Limit

The scale limit $\Lambda_{\mathcal{R}}$ for an anomaly EFT theory maintaining renormalizable without introducing exotics to cancel anomaly at scale M is: (Preskill 1991)

$$M < m_{Z'} \left(\frac{64\pi^3}{|g_{\mathcal{R}}^3 \mathcal{A}_{Z'Z'Z'}|} \right) \equiv \Lambda_{\mathcal{R}}$$

where $g_{\mathcal{R}} \equiv g(\Lambda_{\mathcal{R}})$ and $\mathcal{A}_{Z'Z'Z'} = \operatorname{Tr}[z^3]$ is the U(1)^{'3} anomaly coefficient calculated in the EFT below the scale of the exotics M.

PURPLE CONTOURS: g' runs non-perturbative. GREY REGION: $\Lambda_{P} < M$. RED CURVES: Λ_{R} for $m_{Z'} \sim 1$ TeV(DASHED), and 100 TeV(SOLID). YELLOW CURVES: Unitarity for $m_{Z'} \sim 1$ TeV(DASHED), and 100 TeV(SOLID).

Kuo-Hsing Tsao

000000

Summary and Outlook

Breakdown of Low Energy Theories

Kuo-Hsing Tsao

Axial Vector Z' and Anomaly Cancellation

University of Illinois at Chicago

000000

Breakdown of Low Energy Theories

Kuo-Hsing Tsao

Axial Vector Z' and Anomaly Cancellation

University of Illinois at Chicago

Image: Image:

Summary and Outlook

<ロ>

Kuo-Hsing Tsao

Axial Vector Z' and Anomaly Cancellation

University of Illinois at Chicago

Summary and Outlook

 Anomaly free and UV complete models for axial vector gauge bosons coupling to SM fermions.

Kuo-Hsing Tsao

University of Illinois at Chicago

< □ > < ---->

Summary and Outlook

- Anomaly free and UV complete models for axial vector gauge bosons coupling to SM fermions.
- The additional states required for anomaly cancellation with potentially important constraints have been highlighted.

Kuo-Hsing Tsao

Image: Image:

Summary and Outlook

- Anomaly free and UV complete models for axial vector gauge bosons coupling to SM fermions.
- The additional states required for anomaly cancellation with potentially important constraints have been highlighted.
- The study of phenomenological issues for the *t-b*-philic case is coming soon (Model #6). arXiv 1701.xxxxx

Kuo-Hsing Tsao

Thank you!!!

▲ロト ▲母 ト ▲臣 ト ▲臣 ト 三臣 - のへの

University of Illinois at Chicago

Kuo-Hsing Tsao